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A Lagrangian for the superfield equations of motion for supersymmetric gauge theories with
N = 3 extended supersymmetry is presented. A novel formulation of the previously
constructed infinitely many spinorial continuity equations considerably clarifies their

structure.

I. INTRODUCTION

The maximally supersymmetric gauge theories in four
dimensions’? with N =4 (or equivalently N = 3) super-
symmetry have, among their many remarkable properties,
the feature of ultraviolet finiteness to all orders in perturba-
tion theory.>=* The conjunction of conformal invariance and
solubility is a familiar feature of many quantum field theo-
ries and the strongly constrained dynamics implied by the
ultraviolet finiteness suggests integrability of the field equa-
tions as a possible underlying classical precursor. The finite-
ness of maximal super-Yang-Mills therefore lends further
promise to the notion that these are the appropriate theories
for the realization of duality conjectures® which generalize
the duality between the Thirring model and the sine-Gor-
don model’ to four-dimensional gauge theories with mono-
pole solutions. It is, however, clear that the equations of mo-
tion for the N = 4 theory with Lagrangian®

L= (—}F,F* +}D,®, D"/
—iA'DA, + A [29®,]

_ﬂ'f[ij’q)lj] +}t[q)'!’ ’q)kl] [(I)tj’q)kll) (1)
[where all fields are gauge algebra valued; i, j run from 1to 4;
&Y = Le"™'®,, and the spinors A, are chiral, ;4 = — il and

A “=CA 'yielding ysA © = i ] are not completely integrable
in any conventional sense; nor is the .S matrix of the theory
trivial, as would be expected of a four-dimensional theory
with higher local conserved currents.® Nevertheless, in the
superspace formulation,’ the classical equations of motion
for this theory, similarly to the Yang-Mills self-duality
equations,'® may be formulated in a geometric way as inte-
grability conditions for a set of linear (superfield) equations
based on the Witten—-Manin supertwistor correspon-
dence.!'!? This structural similarity to completely integra-
ble systems with solitons has led to many (hitherto largely
futile) attempts (e.g., Refs. 14-19) to obtain meaningful ex-
plicit results on classical solutions and higher conservation
laws and symmetries using methods analogous to those de-
veloped to study self-dual Yang—-Mills or soliton equations
of the Zakharov—Shabat type. This paper is a further contri-
bution in this direction. We present, in Sec. II, a novel La-
grangian for a reformulated set of superfield equations of
motion. This Lagrangian is rather similar to the Lagrangian
for self-dual Yang-Mills discussed by Leznov and Save-
liev.?° In Sec. III we discuss the infinite number of continuity
equations, first introduced in Ref. 15, which in the new for-
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mulation of this paper are considerably clarified. They ac-
quire a more explicit form that is perhaps more amenable to
interpretation. In Sec. IV we comment on the infinitesimal
symmetry transformations of the equations of motion and
we conclude (Sec. V) with some remarks on the reduction of
these equations to the supersymmetric self-duality condi-
tions.

Il. N=3 SUPER-YANG-MILLS EQUATIONS AND A
SUPERFIELD LAGRANGIAN

N-extended complexified superspace, a supermanifold
of complex dimension (4/4N) with complexified space-time
coordinates x°* = x"a"f and the anticommuting coordi-
nates ¢ %, & %, where a, & are two-component spinor indices
and i, j, = 1,...,Nis the internal SU(XN) index, the upper and
lower indices referring to fundamental and conjugate repre-
sentations, respectively. The supertranslation vector fields
34 = (045,D5,Dy)),

d a

D- = 3¢ +979,5, Dy =£E+'973a5,
a
aB:a.x_aB, (2)

provide a nonholonomic frame for superspace and realize
the superalgebra

{D;;D{g} =0= {Da,',Dogj}y
{D,,Dy;} = 260,5, (3
[9a3Dp] =0=[845:De; ] = [GucsFps |-

The Lie-algebra valued components of the gauge supercon-

nection A, = (4,3,4,,4p;) transform as usual under
gauge transformations

A,—ed e+ erde " (4)
a covariant superfield transforming as ® —e*®e = *, where
the gauge parameter A is a Lie algebra valued superfield,
A = T°A°%(x,9,%), T ° being the Lie algebra generators act-
ing on the gauge indices of 4, and ®. Introducing gauge-
covariant derivatives D, = (D,3,D,,Dp;),

D.p=D,p + [dop ],

de¢ = de¢7 + [A(zj’¢ ]9

Dypyp =339+ [Aap-p 15 (5
transforming as D, —e*(D,p)e ", the superfield curva-
tures F, 5 may be formed by considering the graded commu-
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tator,
{D;, fg} = Fgﬁ; {D(u')DBj} = Fdi,ﬁj,
[DassPs] = Fopps [DaprDai] = Fapair
[Dap:Dys | = €ayFigs + €g5F s
{D..Dy;} =Flp + 28D,
where
Flg=D A}y +Dpd, +{4.,4%},
Fiipj = Daidp; + Dy + {d i,
;,Bj = D;Agj + DBjAL + {A L,ABj} - 25_;:Aa'ﬁy (7N
FLo=0d,4A,—D,A4, +[4,4,],
Fy,c’u’ = auAdi - Dz’u‘A,u + [A,uAm'] s
and F,, (Fg;) are the (anti-) self-dual parts of F,,
=d,4, — 03,4, + [4,.4,].
All the above F,’s are Lie algebra valued superfields
transforming covariantly under gauge transformations.

They are clearly not independent of each other, since the
generalized Jacobi identity imposes relations amongst them,

e.g.
0=[D.,{D;;,Dgi}] + [Deyo{Dpi, D5 }]
+ [Dp{D%.D,;}]
=D Fypi + DyjF i + DpiF iy
_28LF ;. — 25 F e 8)

(6)

or
0=[Ds + {Dj5,Dy}] +{D5,[DyDos 1}

+ {de’ [D;;?’Daﬂ ]}
=D F z,aj —D ZF ap.aj — Dy F fxB,ﬁ
+25;(€apFajs + €5 Fop). (9

Nevertheless, the set of super Yang-Mills fields F,, defined
by Eq. (7) clearly has an enormous number of degrees of
freedom; and in order to minimize the number of component
fields to just those required for the construction of an irredu-
cible representation of the supersymmetry algebra, one
usually imposes the covariant (under both supersymmetry
and gauge transformations) constraint equations,’

F =0=F,;,, (10a)
iP5 =0. (10b)

For N <3, these equations do not imply any equations in x
space. They are therefore a suitable representation condition
for a minimal multiplet of component fields. For N>3, on
the other hand, the constraints (10) do have dynamical con-
tent and do not yield an off-shell representation of the theory
with only the minimal physical fields (viz., one spin 1, four
spin }, and six spin 0). Remarkably, for the case of N = 3, the
constraints (10) are precisely equivalent to the equations of
motion for the component fields.?’
Equations (10a) have the solution

Fgﬂ = 6aﬁ WU, W’j == éjjka,
—c.. — k
Foinj = €up W, W;=e€uWF-,

(11a)
(11b)
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whereas the diagonal parts of (10b) are the conventional
equations expressing the vector potential 4,; entirely in
terms of 4%, and 4, in virtue of (7),

Aaﬁ = % (D;Abi + DB,'A f, + {A :I’ABI}) . (12)
The Bianchi identities can now be used to express the theory
entirely in terms of the superfields F,;, F,z,
W~ WoD.W,Dy,W' €, D, W, ¢*D, W, and covar-
iant derivatives thereof. The leading components (in a pow-
er series expansion in ¥, &) of F,p, F,; yield the field
strength components of the component vector field Az (x),
whereas the leading components of the other superfields
yield the remaining component fields of the theory: two
SU(3)-triplets of scalar fields (W' W,), an SU(3)-scalar
Majorana spinor (4,,4, ), and an SU(3)-triplet of spinors
(XairXs )- These component fields have the following equa-
tions of motion [corresponding to the N = 3 version of the
theory (1)]:

The Dirac equations

€*Doghs + (x5 W:] =0, (13a)
€Dy hs + [XiwW'] =0, (13b)
€ Dosxis + (X5 W €5 — [45,W:] =0, (13¢)
€PDuxs + [XisWi 1€ — [ W] =0,  (13d)
the scalar field equations
€ePD o Doy W, + 2[[W',W;],W,]

= [[W.W.1. W] + €{xopds}

— Jepe{xhxs} =0 (13e)
(similarly for W,), and the Yang-Mills equation
€DopFyp + €7D, Fip + {xpuoxh} +{4,,45}

+ [WiD W + W'D, W,] =0. (130)

The equivalence proof of Ref. 21 eliminates the ¢ depen-
dence of the gauge transformations (4) by subjecting the
superconnection to the “transverse” gauge condition,

FeAL + D94, =0, (14)

which effectively eliminates all ©*-dependent gauge transfor-
mations, while posing no restriction on x-dependent gauge
transformations of the component fields. This allows the
construction of a unique correspondence between a super-
connection constrained by (10) and a component multiplet
solving (13). For the N = 3 theory, therefore, the constraint
equations (10) are just a compact way of writing the field
equations (13). These constraints equations, remarkably,
also correspond to the vanishing of the supercurvature along
supernull lines.!! Consider the equations for the covariant
constancy of sections along the direction in superspace given
by §A = (/-"a% a’.ua’ﬂ'd )s

p’D,®=0=4°%D,®, (15a)

1°A%D,.® =0, (15b)

where v** = u®4 “isanull vector in x space and £ *is defined
to be a supernull vector. Integrability of (15) (i.e., the path
independence of ®) requires £74, = (u°A%4,,,
u°A A %A4,,) to be a flat connection. This is tantamount to
requiring that the supercurvature components satisfy (10),
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and allows the identification'' of bundles with connections
satisfying constraints (10) over super-Minkowski space
with bundles over the supertwistor space of supernull lines
with triviality conditions over certain CP' X CP' submani-
folds. It is the tantalizing similarity of (15) to Lax-type lin-
ear systems for soliton equations which led to previous at-
tempts'*!® to understand these theories using solitonic
methods.

Following our previous approach,'® we note that the
following subset of constraints (10):

Fi, =0=F%, (16)
Fii,iJ =0 =F2i,2j’ aan
F’i,ij =0=F;,2j’ (18)

are equivalent to writing the spinor potentials and two com-
ponents of the vector potential in pure gauge form,

A =g 'Dig, A4, =g 'Di;g, Ai =g 'diig  (19)
AL =h~'Dih, A5, =h"'Dsh, Ay =h"'duh (20)
Introducing the matrix

B=gh—!, (21)

the remaining components of the vector potential then take
the form

A; =g "9+ 'DI(BDsy,B Y)g (22a)
=h '3k + 3h ~'Dy, (B ~'D{B)h, (22b)
Ay =g '9g+ 8 'Di,(BD;B )¢ (23a)
=h"13,ih + ih ~'D (B~ 'Dy,B)h (23b)

in virtue of (10b).
A gauge transformation (4) of these potentials (19)-
(23) corresponds to the transformation

g—Uge ", h—-Vhe " (24)

where A is an arbitrary matrix superfield in the (complexi-

fied) gauge algebra, which we take to be gl(n,C), and the

matrices U and V are GL(n,C) matrices satisfying
DiU=0=D;,U, 3,,U=0,
DiV=0=D,V, d;V=0.

(25a)
(25b)
The remaining constraints in (10) may now be multiplied by

g on the left and g~' on the right to yield the equivalent
equations,

D{BDJB ') =0, (26a)
D;,(BDy,B~") =0, (26b)
D (BDyB ") —28gD;;8~ ' =0, (26c)
D;,(BD}B ') —28,gD,;g ' =0. (26d)

These equations transform covariantly under the U transfor-
mation in (24), being manifestly invariant under the V- and
A-dependent parts of (24 ). Equations (26) may be solved by
writing
BD.B~'=Dix, (27a)
BDyB ™' =Dy, (27b)

where x and y are matrix superfields transforming under the
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gauge transformation (24) as

x-UxU™Y, y-UyU~L (28)
These superfields satisfy the equations
Djx=0=D)y (29)

in order to satisfy the nondiagonal parts of (26c), (26d)
yielding the following expressions for the potentials 4,5 ,4,;
of (22), (23):

A4 =g_l(ali +3,iy)8 (30a)
Ay =g (4 +d,ix)g. (30b)

Similarly multiplying the curvature components in (16)-
(18) by gon the left and g~ on the right, we see that the first
equality in (16)—(18) is identically satisfied, leaving the fol-
lowing forms of the right-hand side equations:

D{(BD)B~'y +{BD.:B~',BD,B '} =0, (31a)
D;;(BD;,B~") +{BD;B ,BDy;B~'} =0, (31b)
Di(BDyB~") + Dy (BD:B ")
+{BD{B~',BD;B~'}
=28/gD)8~". (31¢)

Inserting the solution (27) into these equations yields the
equations

D{D)x + {Dix,Dix} =0, (32a)
D;Di,y + {Diiy’Dijy} =0, (32b)
D;Dy,y + D;,Dix + {Djx,Dj;y}

=26/gD,;8~". (32¢)
The last of these may be written, using (29),
D|Djx + Dy, D3y + Dj; [ Dix,y]

=28/(d;3x + &5y + [diixy] —gDsg™").  (33)

The nondiagonal parts of this equation are satisfied if the
superfields x and y, in addition to (29), satisfy

D;x =0, (34a)

D;y+ [Dixy] =0, (34b)
yielding

Ay =g "3y + Ii3x + iy + [dixy])e (35

In terms of the matrix superfields x and y satisfying (29),
(34), the equations of motion for the theory therefore take
the remarkably simple form of Eq. (32a), (32b).

Introducing the symmetric products of pairs of deriva-
tives (2),

DUEDaiD{I — Dﬁ,
D,=D,D¢=D,,

aij

(36)

Egs. (32a), (32b) may be obtained by varying the Lagran-
gian density

L = tr{D,; (4D} xD} x + xD} xDj x)

+ DY(4Dj;yDy,y + yDiyDi» . (37)
This Lagrangian can be considered to be an integral over a
subspace of the odd part of superspace, since up to a total x
derivative, a supercovariant derivative D/, is equivalent to an
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an ordinary spinor derivative d /3¢ ¢, which in turn is equiv-
alent to a ¢ integration (since § d& ¢ = 1). The Lagrangian
(37) is therefore a sum of integrals over a two-dimensional
subspace and a two-dimensional & subspace. The functional
(37) is rather reminiscent of the superinvariants constucted
in Ref. 22 by integrating over even-dimensional submani-
folds of extended superspace. The constraints (29), (34) on
x and y may be incorported using Lagrange multipliers.

lll. A CONSTRUCTION OF CONSERVED CURRENTS

Equations (32) are the consistency conditions for the
following set of equations:

N'Y=(D}| + D) +uDix)¢ =0,
MyYy=(D;; +ADs;;, + ADy;»¢v=0,
ZyY=(9,; +A(d13 + 6,iy) + pu(dy; + 3, x)
+ A0y +di3x + 055y + [diixy D)W =0,
(38¢c)

where ¢ is a matrix superfield in the gauge group depending
on both parameters 1 and A. Consistency of the above equa-
tions is tantamount to requiring that (N, M,,Z) satisfy the
quantum-mechanical supersymmetry algebra,

(38a)
(38b)

{N N} =0={M,M}, (39a)
{(NiM} =252, (39b)
[N\Z]=0=[M,Z]. (39¢,d)

The brackets (39a) yield relations (32a), (32b) and the re-
lation (39b) corresponds to Egs. (29), (34). The system
(38) may be obtained from (15) by multiplying the latter by

g~ ' on the right and g on the left, inserting the solution (27),

and denoting by parameters u and A the ratios of the compo-

nents of the spinors u®and A %, u*/u' =p, A*/A'=A.
Now we introduce the generating function for super-

fields x™p"  (n30x"=xy%=yp), Iny, where
Y= lim ¢y;
N- o
¢N _ e-/l”y‘"' I)e_‘uNx(N— I)e_AN— 1N =2)
X e R g~ g —px (40)

Requiring that this ¥ satisfies (38) immediately yields an
infinite number of conserved supercurrents. From (38) we
obtain
YD\, )Y ' =9(D} +uDj)y¢ "' =uDix,
¢(Di +42,i)¢—15¢(Dii +4 Dii)'ﬁ_l =A Diiy’
Y(3)i +udyi + A5 +uidy ¢!

=pdyix + 49,1y +pA(G3x + 05y + [3,ixp])-

(41a)
(41b)

(41c)

Equations (41a)-(41b) immediately yield
DY(yD}, . ¥7') =0, (42a)
Diu(¥Di, ¥~ ") =0. (42b)

Expanding (42) in u,A yields the N th continuity equation as
the trace [over the SU (3) indices] of the coefficient of z™¥ * !
and A ¥+ !in (42a) and (42b), respectively. We consider

¢3 - e__Anyz)e_#Jxme_Azyme_“zx(ne_iye_#x.

Expanding #; D}, ,,#; ' up to order u2 3 yields

Di +u2 +ADj +u2 + (A%/2) [Dll +p2J’:}’] + (A°/6) [ [D’1 +p2J’9y]:}’] +/‘D’i +u2X +/l,u[D'i +y2x’.V]
+ A/ [[Diy axy]y] + /6 [[[Di 4 2 xp]0]0] + W/2)[Di wxx] + ?/2) [ [Di, oxx]p]
+ A/ [[[Diy0xx]p]2] + A1) [[[[Di L 2xx]01w]0] + #2/6) [ [Dixx]x]
+ A4/ [ [ [Dixx]x]p] + (A2 /12) [[ [ [Dixx],x].0]w] + (A°6%/36) ... [Dix.x].x1yl.ylx]
+ 1D 0 XV + AP [D] | 0 px V] + (A3/2) [[ DS 2pp]x] + (A6 [[[Di abw]»]x]
D4 2 XX "] + 4D oy + A7 [Diy py "] +pAP D] o xd] +pA [ [DYL %] 0"0]
+ A/ D [[Diy o xx] 0] + AW/ [[[Di 4 oxx]p]0M] + (A%7/6) [ [ [Dixx],x] "]
+ (/{ 3/—‘3/6) [ [ [ [Dlix,x],x],y], (1)] +i ZIuZ[Dll +#2x(l)’ (l)] +,{ 3"‘2[ [DI1 +#zy,x(l)],y“)]
+w’Dix? + 1A [Dipx®] + WA %/2) [ [Diyy] X?] + (*2°/6) [ [ [Dipy]¥]:x?)
+ @A [DYx®] + A2 [Dipy "] +A°Di, o3 + 2% [Di L 2xy?] + (A%?/2)[[D], oxx] ]

+ (/1 3#3/6) [ [ [D'ix,x]x], (2)] + A 3/-‘2[D; +,uzxm:y(2)] +,u3/l 3[D’ix(2’,y‘2)].

(43a)

Similarly expanding ¥, D; , ;3,45 ' yields [we suppress the SU(3) index / in this formula]

Diias +ADi, 4 + (A%/2)[Di o 15391 + (A%/6) [ [ Dy 1590]5] +Di , 5% + pd [Di, 13%p]
+ @A /D) [[Di, 3x9)5] + (A/6) [[[Diy sx»]115] + W/2) [Dy | ssxx] + (A2 [[Di 4 13%x]]
+ A%/ D [[[Diy 5xx]010] + AW [[[[Di, 5xx]0]010] + @/6)[[Di, 15xx].x]
+ (A2/6)[[[Di 4 13%x].x1p] + (A1) [[[[Diy s%x1%15].0] + (A°#*/36) [[[[[Di 1 1 xx]1x]p1r1y]
+ Dy X + 1A D, 5px "] + WAY/2)[[Di a2pp]x] + WPA%/6) [[[Diy b)) 5]
+£#°[Di25xx"] + 4P [[Di 4 3 xy] %" + @A 2/2) [[[Di 4 3 xy] 10
+ WA/ [[[[Di s xy]7]1x"] + 22Dy 4 53" + A3 [Dipy™] + A% [Di, 5xp"]
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+ A% [ [Diy w2y ]10V] + WA/ [[Diy 5xx]0"] + @AY [[[Di axx]p] "]

+ (PAY6) [ [ [Di 4 1sxx1x]0"] + (P4 %/6) [ [ [ [Di 4 12%%] %] 10" ] + 4767 [Di , sx V"]
+/.t213[[D-1+,uy,x(”], (1)] +/12/,t3[[D1+,12X,xm], (1)] +/I3y3[[[Dix,y]x“)],y(”] +#3Di+nx(2)
+ 124 [Di ;%21 + (A7) [[Di 1 1spw]x®] + @2 %/6) [ [ [Diyy]r].x?]
+l~‘3/12[Di+/12ym’x(2)] +l—‘31'3[[Diy, (1)]’x(2)] +/13Di+,12y(2)+/13,U[Dix,y(2)]

+ (4 3,u2/2)[[Dix,x],y(2)] + (,u3i 3/6) [ [ [Dix,x],x], (2)] +/13p2[Dix‘”,y""]

+,u'3’1 3[ [Dix’x(l)],y(Z)] + A 3#3[Dix(2)’y(2)]
and
¥2(0yi + s + Adys + pAdy !

= udix + A9,y + pA (313 x + 951y + [, x.p])

+ p2(Fyix + 3[01ix.x] + 311 xM) + 22015y + 3[01iyy] + 3 y'") + pA 235y + 3[8iy:y] + [B13%.¥]
+4[[01ixp]p] + By + [81ixp'"]) + A (Fpsx + §[ I xx] + [Faix,)]

+3[[Biixx]¥] + 00 xV + [3,13:x"]) + O(u?A?).

Therefore, Egs. (41) contain Egs. (29), (34),

D, x =0, (29a), (34a),
Djy=0, (29b),
Djy+ [Dixy] =0 , (34b),
as well as the relations

D{x"V 4+ Djx + }[Dix,x] =0, (44a)
Di x? + Dix® + [Dix,x"]

+4[Dix,x] + 3[ [Dixx].x] =0, (44b)
Diy™ =0, n»0, y¥=y, (44¢)
Dy + [Dixy"] =0, n>0, (44d)
D; [x"y] =0, (44e)

as coefficients of u?, u3, A"+, pA "+, u?A, respectively, in
(41a), and

D; 3"V + Dyy +4[Diyy] =0, (45a)
Diiym + Diiym + [Diiy’y“)]

+3[Dsyy] + [ [Didy]¥] =0, (45b)
D;x™ =0, n>0, x9=x, (45¢)
D;x" + [Djp,x™] =0, n>0, (45d)

as coefficients of A2, A3, u"*+!, u"*'A, respectively, in
(41b). Equation (41c) yields the relations

dix +3[dixx] + 3,;x" =0,
% + 4] %x] + 31 xV + 8y [yxV] =0,

(46a)
(46b)
which together with (29), (34), (44a), and (44e) may be

used to verify the integrability condition (39c), as well as the
relations

3y +3[iyy] + 011" =0, (46a’)
0y + %[azil":)’] + aziym + [alix’}']
+i[[3liX,,V]aJ’] + [alix9 (l)] =0, (46b")

which together with (29), (34), and (45a) may similarly be
used to verify the integrability condition (39d).
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(43b)
(43c)
!
Now defining
J{Wi= —Dix", (47a)
JiP = —Diy ™, (47b)
we clearly have
DY J{"" =0 =D, Ji, (48)

and, tracing over the SU (3) indices, yields infinitely many
solutions of the conservation equation

D’iJzi _DiiJé =0. (49)

Thus the coefficient of ¥ *' (A% *') in (41a) [(41b)]
yields an expression for J {¥¢ (J{¥) in termsof x‘™ (y'™),
n < N, and its derivatives. Therefore, given superfields x,y
solving Egs. (32), (29), (34), we need to perform no further
integrations in order to successively construct all the J {*’s
and J {7’s explicitly just by taking spinorial derivatives and
commutators. From (44), (45), the components of the first
two currents, for instance, are

J{V'=Dix + }[Dix,x], (50a)
152):‘:]3; x4 [D:]‘x’x(l)]

+4[Dixx] + 5[ [Dix.x]x], (50b)
J§P =Dsx + 4[Diyy], (50c)
JP =Dy + [Dyyy]

+4[Dayy] + 4 [Diyy]r]. (50d)

1V. INFINITESIMAL SYMMETRY TRANSFORMATIONS
Analogously to the infinitesimal symmetry transforma-
tions obtained previously in Ref. 15, the equations of motion
(32), (29), (34) are left invariant, to first order in the vari-
ation, under the transformations
Sx= —pu'(YTY™") + &,
Sy=—A"'WTY™ ) + 1,

where 1 satisfies (38), and T'is a matrix in the gauge algebra

(51a)
(51b)
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satisfying
(D{ +uD;)T=0, (52a)
(Di; + AD5,)T =0, (52b)
(G +4015 + 16,y + Audy )T =0, (52¢)

and the matrix superfields £ and 7 are defined to be solutions
of the following equations:

D {=0=Djn,

Daj§=ﬂ—lDiij: (53)
1m=4""Dis5,
Dj 7 =u""[D} Sy] —4 ' D} S— [Di ],
where
S=yTy—". (54)

It is clear that (29), (34) are left invariant under the
variations (51), whereas the invariance of Eq. (32a) re-
quires the vanishing of

D{'D? S+ {D{x,D} S}
Taking the second term in (55)
{D¢x,DP S} = —D{[D} x,5]
=u"'D{D} S+ D{DJ} S,

(35)

using (38a).
Thus (55) vanishes. The invariance of (32b) may similarly
be verified using Eq. (38b).

The algebra of these infinitesimal transformations as
well as their integrability to finite (Bicklund) transforma-
tions will be discussed elsewhere.

V. SUPERSYMMETRIC SELF-DUALITY CONDITIONS

The supersymmetric self-duality equations arise as inte-
grability conditions if, in addition to (38), the matrix super-
field 4 is required to be u independent,

a
— ¢ =0.
a,uzﬁ

This is tantamount to all the x*™ ’s, n>0, in (40) being set to
zero. Then Eqgs. (38) reduce to

(56)

D} ¢ =0= (D + D{x)¢, (57a)
(Di; +ADj; +ADjy)¢p =0, (57b)
[ali +A(dy; +aliy)]¢=0s (57¢)
[0 +A(p + 0, ¥ =0, (57d)
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a supersymmetrization of the linear system (57c), (57d) for
the form of the self-duality equation

Yy + Yz = [V,2:], (58)

[where we use Yang’s variables x,; = [ ; ], used by Lez-
nov and Saveliev?’ in their reformulation of the conservation
laws for which the generating function #|,_, in (40) is
identical to that found in Ref. 23. Similarly, imposing A inde-
pendence on ¢ yields the anti-self-duality equations.
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